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Abstract
We determine the (bound) ground state of a spin-1/2 chargeless particle with
anomalous magnetic moment in certain Aharonov–Casher configurations. We
recast the description of the system in a supersymmetric form. Then the
basic physical requirements for unbroken supersymmetry are established. We
comment on the possibility of neutron confinement in these systems.

PACS numbers: 03.65.Ge, 03.65.Bz, 12.60.Jv, 11.30.Pb

Aharonov and Casher (A–C) draw attention to the existence of a quantum mechanical process
[1–3], where the behaviour of an uncharged dipole is affected by the presence of an electric
field. Let us imagine a quantum system consisting of an electrically charged object with axial
symmetry centred around, say the z axis. The nearly point magnetic dipoles are completely
polarized along the positive z direction. It is straightforward to note that this system can be
recast in a supersymmetric form [4–6]. To study supersymmetry breaking, one solves the
corresponding eigenvalue problem for the ground state of the given geometrical configuration.

Here we are concerned with another application of the A–C effect. It deals with the
conditions for finding the bound states of a system with unbroken supersymmetry. To this
end we have to assume connectness in the configuration space in order to be able to define a
normalizable ground state. The problem turns out to have exact supersymmetry only under
the fulfilment of a condition for the magnitude of the charge distribution which generates the
electric field. We also discuss the possibility of breaking supersymmetry by examining the
requirements for the existence of lower energy bound states.

To be specific, let us consider a spin-1/2 chargeless particle (i.e. a neutron) with anomalous
magnetic moment κn. The Dirac equation can be written [7] in a covariant form (h̄ = c = 1)

as {
γµpµ − η

2
σµνF

µν − Mn

}
�(x) = 0, (1)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field tensor with η = eκn/Mn. The
interaction term η

2 σµνF
µν is the usual Pauli coupling which exhibits the correct magnetic

moment of the neutron.
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The Aharonov–Casher effective wave equation is obtained by making A0(r) �= 0, B(r) =
0, with ∇ · E(r) =4πρ(r). Equation (1) can be recast in the form of a ‘minimal interaction’
in the Dirac equation:

{α · (p + iηβE(r)) + βMn}�(r, t) = i
∂

∂t
�(r, t). (2)

For stationary states of energy E, we write

�E(r, t) = �E(r) e−iEt =
(

φE(r)

χE(r)

)
e−iEt . (3)

Thus from (2) we find [6] that

{p2 + ητ3 ⊗ (2σ3(E(r) × p)3 + ∇ · E(r)) + η2E2(r)}�E(r) = ε�E(r), (4)

where τ3 is a z-Pauli matrix which commutes with σ = (σ1, σ2, σ3), with σi Pauli matrices,
and ε ≡ E2 − M2

n. A N = 1 supersymmetry algebra can be constructed in the form

HSS = {Q,Q†} = QQ† + Q†Q, [HSS,Q] = [HSS,Q
†] = 0, (5)

with

HSS�E(r) = ε

2Mn

�E(r). (6)

Here

Q ≡ 1√
2Mn

τ− ⊗ σ · (p − iηE(r)) (7)

is the supersymmetric charge and τ− = 1
2 (τ1 − iτ2), where the τ1, τ2 are also Pauli matrices.

Thus HSS is invariant under Q and Q†. The supersymmetry (5) also has implications for the
spectral properties of the Hamiltonian HSS: we note that HSS = {Q,Q†} � 0. That is, the
Hamiltonian has only non-negative eigenvalues. Let us suppose that |Ea〉 is an eigenstate of
HSS with positive eigenvalue Ea > 0. Then it follows that

|Ea〉′ ∝ Q†|Ea〉 (8)

is also an eigenstate with the same positive eigenvalue. Relations (5) and (6) are the graded
algebras of a supersymmetric system consisting of a relativistic spin- 1

2 particle interacting
with an external electromagnetic field.

From (6) we find that the equations for φE and χE are decoupled. In particular, for thermal
neutrons we consider the upper components of �E which satisfy{

p2 − 4ηE(r)
r

S · L − η∇ · E(r) + η2E2(r)
}

φE(r) = εφE(r), (9)

where r = |r| , with L the orbital angular momentum operator. The supersymmetric generators
annihilate the ground state in order to have unbroken symmetry,

Qφ(0)(r) = 0, Q†φ(0)(r) = 0, (10)

where φ(0) is the ground state of the system.
The second equation of (10) is satisfied identically since in the nonrelativistic limit the

lower components �E=Mn
vanish. The first one yields

σ · {p − iηE(r)}φ(0)(r) = 0. (11)

Without lack of generality we can set

φ(0)(r) =
(

φ(r)
0

)
, χ(0)(r) =

(
0
0

)
. (12)
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Furthermore, in a system with axial symmetry we also have the condition L3φ(0)(r) = 0, i.e.
φ(0)(r) = φ(0)(r). Here then we are concerned with states for which E2 = M2

n (ε = 0).
We begin by considering a solid sphere with the uniform charge per unit volume ρ0 centred

in the origin of the laboratory frame, so that there exists an electric field

E(r) =
{

4πρ0r/3, 0 � r � r0;
4πρ0r

3
0 r

/
3r3, r0 � r < ∞,

(13)

where r0 is the radius of the sphere. In this circumstance there is apparently no force on the
neutrons but there exists a kind of Aharonov–Bohm effect [1–3, 7]. Nevertheless, if we allow
the neutrons to penetrate the sphere, we can consider the problem of the possible bound states
of the neutron in this new A–C configuration.

Then from (11) we find the first-order differential equations(
∂

∂r
− βr

)
φ(r) = 0, 0 � r � r0;

(14)(
∂

∂r
− β

r3
0

r2

)
φ(r) = 0, r0 � r < ∞,

where β ≡ 4πρ0η/3. Thus

φ(r) =
{

A exp(−βr2/2), 0 � r � r0;
B exp

(−βr3
0

/
r
)
, r0 � r < ∞,

(15)

with A,B complex constants.
Next we demand continuity of the wavefunction and its derivative at r = r0. Both

conditions yield the same information:

A

B
= exp

(
−1

2
βr2

0

)
. (16)

Moreover, if �E=Mn
belongs to the Hilbert space, φ must be normalizable in R

3:

4π lim
r→∞

∫ r

0
|φ(r ′) |2 r ′2 dr ′ → 1. (17)

However, as r → ∞ this integral diverges since exp
(−βr3

0

/
r
) → 1. Therefore supersymmetry

is broken in this case.
Next we solve the general problem (9) by separation of variables: φ(r) =

φ(r)Yl,j,m (θ, ϕ), where in terms of the spherical harmonics Ylml
,

Yl,l±1/2,mj
(θ, ϕ) = 1√

2l + 1

{
±

√
l ± mj +

1

2
Ylmj −1/2(θ, ϕ)

(
1

0

)

+

√
l ∓ mj +

1

2
Ylmj +1/2 (θ, ϕ)

(
0

1

)}
. (18)

The radial solutions must be normalizable in the range 0 � r < ∞, and we also demand
continuity at r0 on the corresponding solutions. For ψ<(r) (r � r0) we find(

d2

dr2
− l(l + 1)

r2
+ ε±j − β2r2

)
ψ<(r) = 0, (19)

with ε±j ≡ ε + β (3 ∓ 2 (j − 1/2)). Thus

ψ<(r) = C1F1

(
l + 3/2 − ε±j

2
; l + 3/2 + 1;βr2

)
rl+1 e−βr2/2, (20)
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where C is a complex constant and 1F1 is the confluent hypergeometric function.
For r � r0 we obtain(

d2

dr2
− l(l + 1)

r2
+ ε ∓ 2βr3

0
j − 1/2

r3
− β2

(
r3

0

r2

)2
)

ψ>(r) = 0. (21)

Equation (21) has only one kind of solution: non-normalizable scattering-like states for ε > 0(
E2 > M2

n

)
since the potential decreases as V ∼ 1/r2 (1/r3 ∼ dV/dr), and also because

there is a term proportional to 1/r4 induced by the electric moment of the particle [1].
The second case considers a small sphere with charge qn of small radius ε (in the limit

qn → 0) at a distance a in front of an infinitely extending conducting wall. If r ′ is the distance
of the point of observation from the image charge q ′

n, the potential of the charges becomes

V (x, y) = qn

r
− q ′

n

r ′ , r, r ′ � ε, (22)

where

r2 = (a − x)2 + y2, r ′2 = (a + x)2 + y2, (23)

with r̂ · ŷ = 0. Thus

E(r) = −qn

{
a − x

((a − x)2 + y2)3/2
+

a + x

((a + x)2 + y2)3/2

}
r̂, 0 � x < ∞. (24)

Then from (11) we get

ln φ(0)(x, y) = ηqn

{
1√

a2 − 2ax + x2 + y2
− 1√

a2 + 2ax + x2 + y2

}
. (25)

By choosing y = 0, we find that

φ(0)(x) = exp ηqn

{
1√

a2 − 2ax + x2
− 1√

a2 + 2ax + x2

}
, (26)

which is a non-normalizable ground state function, since as a → ∞, the ground state
φ(0)(x) → 1, for any qn → 0. Furthermore, if a → ε and qn → 0 then φ(0)(x) → 1.
Therefore supersymmetry is also broken in this case.

In the next example we take an infinitely large uniform charge distribution with density
per unit volume ρ, where a symmetric infinite plane of thickness L has been removed. This
situation resembles a potential well in one-dimensional quantum mechanics. In this case we
have

φ(0)(z) =
{

A exp
(− 1

2 |α|(z2 − L|z|)), L/2 � |z|;
A exp

(− 1
2 |α|( 1

4 − 1
2L

))
, |z| < L/2,

(27)

where A is a constant and α = −eρκn/4Mn. Here then φ(0)(z) is normalizable, supersymmetry
is unbroken and then neutron confinement is achieved.

Finally, let us examine the standard 1+2 A–C configuration [6]. The problem turns out to
have exact supersymmetry only under the fulfilment of a condition for the magnitude of the
charge distribution which generates the electric field.

The standard A–C configuration consists of an infinite line with uniform charge per unit
length λ centred along the (divergent) z axis [1]. Next we note that if we allow the neutrons
to penetrate, instead of a charged line, a thin solid infinite cylinder with a given density ρ per
unit volume, the neutrons can be trapped under certain physical conditions. This can be done
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by using materials such as for instance aluminium [10]1 which is transparent to neutrons. To
this end, we consider that the cylinder generates the electric field

E(r) =
{

ρr/2, 0 � r � r0;
ρr2

0 r
/

2r2, r0 � r < ∞,
(28)

where r0 is the radius of the cylinder and for simplicity we have chosen r̂ · ẑ = 0. Here r̂ and
ẑ are unit vectors in the r and z directions respectively. The neutrons are completely polarized
along the positive z direction. They move on a plane in the presence of E.

Then again from (11) we find the differential equations(
∂

∂r
− βr

)
φ(r) = 0, 0 � r � r0;

(29)(
∂

∂r
− βr2

0

r

)
φ(r) = 0, r0 � r < ∞,

where β ≡ −eρκn/4Mn. Thus

φ(r) =
{

A exp
(

1
2βr2

)
, 0 � r � r0;

Brβr2
0 , r0 � r < ∞,

(30)

with A,B complex constants.
We require continuity of the wavefunction and its derivative at r = r0 yielding the

boundary condition A exp
(

1
2βr2

0

) = Br
βr2

0
0 . Additionally, if �E=Mn

belongs to the Hilbert
space, φ must be normalizable in R

2 and thus we must require that βr2
0 < −1. This inequality

comprises a necessary requirement on the possible values of λ ≡ ρπr2
0 if we want to

keep unbroken supersymmetry. As λ depends linearly on r2
0 , one can in principle set up

a configuration with the required λ [1, 6]. For instance, putting c into the expression for
λ, we get |λ|min � 4πMnc

2/|eκn| � 4.6973 × 10−3 (C cm−1). Of course, this result is
independent of the charged line diameter 2r0. From the above we can sketch at least two
main conclusions. First, in the one-dimensional systems the electric charge distribution
has to be sufficiently spread out in space in order to preserve unbroken supersymmetry. If
this is the case, φ is normalizable and thus �

(0)
E=Mn

constitutes a bound state of the system.
Additionally, in the standard two-dimensional system, the magnitude of the electric charge
distribution has to be sufficiently large (λ � 4πMnc

2/|eκn|) in order to produce a bound
ground state. Secondly, in both the one- and two-dimensional systems, we are not declaring
that the neutron directly physically senses a force due to the electric field generated by the
charge density. From the third term on the left-hand side of (9), we state that the neutron
moves towards regions where the gradient of the electric field increases. The second term in
the same equation corresponds to the appearance of an induced electric dipole moment on the
particle [1].

Note that, in the standard A–C configuration, the fulfilment of the condition E2 � M2
n

would allow thermal neutron confinement by an electrostatic field as a physical consequence
of a purely quantum mechanical effect. Neutron trapping is usually obtained by means of
diverse magnetic trap systems [8]. Cold neutrons are extensively used: in tests of fundamental
quantum theory [9], and in applied physics [10].

To treat the general eigenvalue problem, we observe that the one stated by (9) has two
kinds of solutions [6]: (a) non-normalizable scattering-like states for ε > 0

(
E2 > M2

n

)
;

(b) normalizable bound states for ε < 0
(
E2 < M2

n

)
. The energy levels are obtained by

requiring that the radial solutions and their derivatives be continuous at r = r0, i.e., this is the
quantization condition for the remaining energy levels.
1 I am grateful to Professor A G Klein for this information.
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